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Abstract. We show how the widely used concept of spontaneous symmetry breaking can be
explained in causal perturbation theory by introducing a perturbative version of quantum gauge
invariance. Perturbative gauge invariance, formulated exclusively by means of asymptotic fields,
is discussed for the simple example of AbelianU(1) gauge theory (Abelian Higgs model). Our
findings are relevant for the electroweak theory, as pointed out elsewhere.

1. Introduction

It is quite a common assumption that scalar QED with massive photons is not a gauge
theory in the usual sense, because the introduction of a mass term in the Lagrangian for
the gauge field violates theclassical gauge invarianceof the theory. Therefore, a ‘Higgs’
field with a nonvanishing vacuum expectation value is usually coupled to the photon which
then acquires a mass [1]. Proceeding in this way, the localU(1) invariance is not absent,
but ’hidden’.

It is the aim of this paper to demonstrate how massive gauge theories can be described
in the framework of causal perturbation theory [2] by means of a perturbative version of
quantum gauge invariance (25). Perturbative gauge invariance has the advantage that it
provides a powerful tool for the actual construction of the theory. We will demonstrate
this for the Abelian Higgs model in section 4§. Starting from a cubic coupling∼ AµAµφ,
gauge invariance of first order demands the introduction of scalar ghost fieldsu, ũ and
of an additional unphysical scalar field8 and fixes most of the cubic couplings. Then,
gauge invariance to second order determines the remaining cubic couplings and requires
additional quartic ones. One has to go to third order to fix the quartic couplings completely.
The resulting couplings contain the Higgs potential which, however, comes out as a quartic
polynomial in the original asymptotic scalar fieldφ with vanishing vacuum expectation
value 〈φ〉 = 0. This means that gauge invariance leads us directly to the final theory
‘after spontaneous symmetry breaking’. Although we can see the symmetry breaking in
the double-well potential at the end, it plays no direct role in the construction: perturbative
gauge invariance alone does the job.

The method works beautifully in the more complicated situations of the electroweak
theory, as pointed out in detail elsewhere [9, 10].

§ We would like to thank Bert Schroer for posing this problem.
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2. Gauge invariance for massive gauge fields

2.1. Causal perturbation theory

Our work is best done in the framework of causal perturbation theory, which has its roots
in a classical paper by Epstein and Glaser [2]. In this approach theS-matrix is constructed
inductively order by order in the form

S(g) = 1+
∞∑
n=1

1

n!

∫
d4x1 . . .d

4xn Tn(x1, . . . , xn)g(x1) . . . g(xn) (1)

whereg(x) is a tempered test function that switches the interaction. The first order (e.g.
for QED)

T1(x) = ie : 9̄(x)γ µ9(x) : Aµ(x) (2)

must be given in terms of the asymptotic free fields. It is a striking property of the causal
approach thatno ultraviolet divergencesappear, i.e. theTn’s are finite and well defined up
to finite normalization terms. The adiabatic limitg(x) → 1 has been shown to exist in
purely massive theories at each order [2].

The crucial point in the causal formulation of perturbation theory is that the usual formal
definition of theTn via simple time ordering

Tn(x1, . . . , xn) = T {T1(x1), . . . , T1(xn)} (3)

≡
∑
5

2(x0
51
− x0

52
), . . . , 2(x0

5n−1
− x0

5n
)T1(x51), . . . , T1(x5n

) (4)

where the sum runs over alln! permutations, contains ultraviolet divergences, therefore
there must be an error in the derivation. Epstein and Glaser [2] proceeded more carefully
and introduced the followingn-point distributions:

A′n(x1, . . . , xn) =
∑
P2

T̃n1(X)Tn−n1(Y, xn) (5)

R′n(x1, . . . , xn) =
∑
P2

Tn−n1(Y, xn)T̃n1(X) (6)

where the sums run over all partitions

P2 : {x1, . . . , xn−1} = X ∪ Y X 6= ∅ (7)

into disjoint subsets with|X| = n1, |Y | 6 n− 2. Assuming by induction thatT1, . . . , Tn−1

are known, thenA′n andR′n can be calculated. One also introduces

Dn(x1, . . . , xn) = R′n − A′n. (8)

If the sums are extended over all partitionsP 0
2 , including the empty setX = ∅, we obtain

the distributions

An(x1, . . . , xn) =
∑
P 0

2

T̃n1(X)Tn−n1(Y, xn) (9)

= A′n + Tn(x1, . . . , xn) (10)

Rn(x1, . . . , xn) =
∑
P 0

2

Tn−n1(Y, xn)T̃n1(X) (11)

= R′n + Tn(x1, . . . , xn). (12)
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These two distributions are not known by the induction assumption because they contain
the unknownTn. Only the difference

Dn = R′n − A′n = Rn − An (13)

is known. We stress the fact that all products of distributions here are well defined
because the arguments are disjoint sets of points so that the products are tensor products of
distributions.

One can determineRn or An separately by investigating the support properties of the
various distributions. Causality of theS-matrix requires thatRn is a retarded andAn is an
advanced distribution [2, 3]

suppRn ⊆ 0̄+n−1(xn) suppAn ⊆ 0̄−n−1(xn) (14)

with

0̄±n−1(x) ≡ {(x1, . . . , xn−1)|xj ∈ V̄ ±(x), ∀j = 1, . . . , n− 1}
V̄ ±(x) = {y|(y − x)2 > 0,±(y0− x0) > 0}. (15)

Hence, by splitting the causal distribution (13) one obtainsRn (andAn), andTn then follows
from (10) (or (12)). TheTn’s so obtained are well defined time-ordered products. Local
terms with support(x1 = · · · = xn), originating from a certain ambiguity in the splitting
procedure, might spoil the symmetry of theTn’s in x1, . . . , xn, but this minor problem can
be removed by subsequent symmetrization.

To carry out the splitting process, we write (13) in normally ordered form and split the
numerical distributionsdkn(x), wherex = (x1− xn, . . . , xn−1− xn)

Dn(x1, . . . , xn) =
∑
O
dOn (x1− xn, . . . , xn−1− xn) : O(x1, . . . , xn) : (16)

where :O : is a normally ordered product of external field operators (Wick monomial). It
is a consequence of translation invariance thatdOn (x) only depends on relative coordinates.

The only nontrivial step in the construction of well defined time-ordered products is
the splitting of a numerical distributiond with support in0̄+ ∪ 0̄− into a distributionr
with support in0̄+ and a distributiona with support in0̄−. In causal perturbation theory
the usual formal time-ordered products with subsequent renormalization are replaced by
this conceptually simple and mathematically well defined procedure. In fact the problem
of distribution splitting was already solved in a general framework by the mathematician
Malgrange in 1960 [4]. Epstein and Glaser [2] used his general result for the special case of
relativistic quantum field theory. A simple solution for the splitting problem can be found
in [3].

2.2. Gauge invariance for massive QED

Since the above construction of the perturbativeS-matrix only uses the asymptotic free
fields, we are looking for a formulation of quantum gauge invariance in terms of these
fields.

We first discuss the simple case of quantum electrodynamics with massive photons. Let

Q
def=
∫

d3x (∂µA
µ(x)+m8(x))

↔
∂ 0u(x) (17)

be the generator of (free) gauge transformations, called gauge charge for brevity.Aµ is the
gauge potential in the Feynman gauge,u, ũ are fermionic ghost fields and8 is a neutral
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scalar, satisfying the well known commutation relations

[A(±)µ (x), A(∓)ν (y)] = igµνD(∓)
m (x − y) (18)

{u(±)(x), ũ(∓)(y)} = −iD(∓)
m (x − y) (19)

[8(±)(x),8(∓)(y)] = −iD(∓)
m (x − y) (20)

and all other (anti)commutators vanish. All these fields fulfil the Klein–Gordon equation
with the same massm. In order to see how the infinitesimal gauge tranformation acts on
the free fields, we calculate the (anti)commutators [9]

[Q,Aµ] = i∂µu [Q,8] = imu (21)

{Q,u} = 0 {Q, ũ} = −i∂µA
µ − im8 [Q,9] = 0. (22)

Then we have

[Q,T1(x)] = −e : 9̄γ µ9 : ∂µu (23)

= i∂µ(ie : 9̄γ µ9 : u) = i∂µT
µ

1/1(x). (24)

Assuming that the operation of commuting withQ commutes with time ordering, we obtain

[Q,Tn(x1, . . . , xn)] = i
n∑
l=1

∂xlµ T
µ

n/l(x1, . . . , xn) = (sum of divergences) (25)

whereT µn/l is a mathematically rigorous version of the time-ordered product

T
µ

n/l(x1, . . . , xn)‘ = ’T (T1(x1) . . . T
µ

1/1(xl) . . . T1(xn)) (26)

constructed by means of the method of Epstein and Glaser [2] described above. We define
(25) to be the condition of gauge invariance [3]. For a fixedxl we consider fromTn all
terms with the external field operatorAµ(xl)

Tn(x1, . . . , xn) =: tµl (x1, . . . , xn)Aµ(xl) : + · · · (27)

(the dots represent terms withoutAµ(xl)). Then gauge invariance requires

∂lµ[tµl (x1, . . . , xn)u(xl)] = tµl (x1, . . . , xn)∂µu(xl) (28)

or

∂lµt
µ

l (x1, . . . , xn) = 0. (29)

It is an interesting observation that although the photon is massive, it is not necessary to
introduce a ‘Higgs’ field to give an explanation for this fact.

3. Unitarity

Equation (29) is the usual gauge invariance condition as in the massless case [3], where no
scalar8 is needed. Moreover,8 and the ghost fields do not couple at all. Therefore, we
have to explain why the unphysical fields have been introduced. The reason is that it allows
us to prove the unitarity of theS-matrix on the physical Hilbert spaceHphys, which is a
subspace of the Fock–Hilbert spaceF also containing the unphysical ghosts and scalars.

The basic property for unitarity is the nilpotency of the gauge chargeQ

Q2 = 1
2{Q,Q} = 0 (30)

and the Krein structure on the Fock–Hilbert space [5–8]. Then the physical Fock space can
be expressed by the kernel and the range ofQ, namely

Hphys= kerQ	 ranQ = ker{Q,Q+}. (31)
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This can be seen most easily by realizing the various field operators on apositive definite
Fock–Hilbert spaceF :

Aµ(x) = (2π)−3/2
3∑
λ=0

∫
d3k√

2ω
(ε
µ
λ (k)aλ(k)e

−ikx ± (εµλ (k)a+λ (k)e+ikx)

ω =
√
k2+m2 (32)

whereεµλ are four polarization vectors satisfying

ε
µ

0
def= kµ

m
gµνε

µ
λ ε

ν
κ = gκλ (33)

3∑
λ=0

gλλε
µ
λ ε

ν
λ = gµν ε

µ∗
λ = εµλ (34)

and we have a minus sign forλ = 0 in (32) to be consistent with Lorentz invariance. A
similar asymmetry occurs in the ghost sector

u(x) = (2π)−3/2
∫

d3k√
2ω
(c2(k)e

−ikx + c1(k)
+eikx) (35)

ũ(x) = (2π)−3/2
∫

d3k√
2ω
(−c1(k)e

−ikx + c2(k)
+eikx). (36)

All creation and annihilation operators satisfy the usual commutation relations. Then the
proof of unitarity is exactly the same as in [5, 6].

We wish to emphasize that we are not forced to represent the gauge potential in the
Feynman gauge as in (32). If we did not do so, the unphysical particles would acquire
a mass depending on the gauge fixing parameter. Furthermore, in the case of a massless
photon, the above considerations remain valid with a little exception: Theunphysicalscalar
field 8 would no longer appear in the gauge chargeQ, therefore it would become physical
and its mass could be chosen arbitrarily, or the field could be removed from the theory.

The full power of the above concept shows up if non-Abelian gauge fields are introduced
(e.g. in electroweak theory [9, 10]). The example which follows shows some essential
features of the more complicated discussion in case of the elektroweak theory. For
simplicity, in section 4 we will demonstrate how perturbative gauge invariance fixes all
couplings in the case of an Abelian theory. In a sense, we willderive the ‘Higgs’ potential.

4. The Abelian Higgs model

4.1. Gauge invariance at first order

Consider the simple case of classical AbelianU(1) gauge theory [11], given by the
Lagrangian

L = (∂µ + igBµ)ϕ
+(∂µ − igBµ)ϕ + µ2ϕ+ϕ − λ(ϕ+ϕ)2− 1

4FµνF
µν (37)

Fµν = ∂µBν − ∂νBµ. (38)

If we assume that the scalar fieldϕ develops a vacuum expectation value|〈0|ϕ|0〉| =
v/
√

2= (µ2/2λ)1/2, then in the unitary gauge we obtain the Lagrangian

L = 1
2(∂µφ)

2− 1
2m

2
Hφ

2− 1
4(∂µAν − ∂νAµ)2+ 1

2m
2AµA

µ + g2vAµA
µφ

+ 1
2g

2AµA
µφ2− λvφ3− 1

4λφ
4 (39)

m = gv mH =
√

2µ (40)
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whereφ is Hermitian and(Aµ, (v+ φ(x))/
√

2) are obtained from(Bµ, ϕ) by a localU(1)
transformation

ϕ(x) = 1√
2
(v + φ(x))eiξ(x)/v Bµ(x) = Aµ(x)+ 1

gv
∂µξ(x). (41)

Now we derive the whole quantum theory in a totally different way. Our starting point is
the first-order coupling∼ AµAµφ of the physical fieldsAµ andφ with massesm andmH ,
respectively. Furthermore, we introduce the unphysical scalar field8 which appears in the
gauge chargeQ. The latter is still given by (17) and the guiding principle is the operator
gauge invariance (25). Then a general ansatz for the first-order coupling, containing only
trilinear terms in the free fields and leading to a renormalizable theory, is

T1(x) = igm : [AµA
µφ + αAµAµ8+ β1uũφ + β2uũ8+ β3Aµu∂

µũ

+γAµ(φ∂µ8−8∂µφ)+ δ18
3+ δ28

2φ + δ38φ
2+ δ4φ

3] : . (42)

We calculatedQT1 = [Q,T1] and obtain

dQT1 = −gm : [2∂µ(u(A
µφ + αAµ8))+ γ ∂µ(u(φ∂µ8−8∂µφ))

+γm∂µ(uAµφ)− 2u∂µA
µφ − 2uAµ∂µφ − 2αu∂µA

µ8− 2αuAµ∂µ8

+αmuAµAµ + β1u∂µA
µφ + β1mu8φ + β2u∂µA

µ8

+β2mu8
2+ β3(∂

µuu∂µũ+ Aµu∂µ(∂νAν +m8))+ γm2uφ8− γm2
Huφ8

−γmu∂µAµφ − 2γmuAµ∂
µφ + 3δ1mu8

2+ 2δ2mu8φ + δ3muφ
2] : (43)

where we have taken out the derivatives of the ghost fields. SincedQT1 has to be a pure
divergence, the terms which are not of this form must cancel. This fixes most of the free
parameters. We immediately obtain

T1 = igm :

[
AµAµφ + uũφ − 1

m
Aµ(φ∂

µ8−8∂µφ)− m2
H

2m2
φ82+ δ4φ

3

]
: (44)

and

dQT1 = −gm : ∂µ

[
(uAµφ)− 1

m
u(φ∂µ8−8∂µφ)

]
:

def=i∂µT
µ

1/1. (45)

Obviously, the quadrilinear couplings in (39) are still missing, andδ4 is not yet fixed.
Therefore, we have to discuss gauge invariance at second and third order.

4.2. Gauge invariance at second and third order

Following the inductive construction of Epstein and Glaser, we have to first calculate the
causal distribution

D2(x, y) = T1(x)T1(y)− T1(y)T1(x) = −A′2(x, y)+ R′2(x, y). (46)

The main problem is whether gauge invariance can be preserved in the distribution splitting.
Obviously,D2 is gauge invariant:

dQD2(x, y) = [dQT1(x), T1(y)] + [T1(x), dQT1(y)]

= i∂xµ[T µ1/1(x), T1(y)] + i∂yµ[T1(x), T
µ

1/1(y)]
def= i∂xµD

µ

2/1(x, y)+ i∂yµD
µ

2/2(x, y).

(47)

Since the retarded partR2 agrees withD2 on the forward light coneV + \ {x = y} and
similarly for Rµ2/1, Rµ2/2, gauge invariance ofR2 can only be violated by local terms
∼ Daδ(x − y). But such local terms are precisely the freedom of normalization in the
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distribution splitting. If the normalization termsN2, Nµ

2/1, Nµ

2/2 can be chosen in such a
way that

dQ(R2+N2) = i∂xµ(R
µ

2/1+Nµ

2/1)+ i∂yµ(R
µ

2/2+Nµ

2/2) (48)

holds, then the theory is gauge invariant in second order. Note that the distribution
T2 = R2 + N2 − R′2 also fulfils (48). The local terms on the right-hand side of (48),
which come from the causal splitting, are called anomalies. The ordinary axial anomalies
in the standard model are of the same kind, they appear in the third-order triangle diagrams
with axial vector couplings to fermions [10].

We consider the following example: in the commutator [T
µ

1/1(x), T1(y)] appears the
term

−g2m : u(x)8(x)[∂µφ(x), φ(y)]Aν(y)A
ν(y) :

= ig2m : u(x)8(x)Aν(y)A
ν(y) : ∂µDmH (x − y). (49)

After splitting this causal distribution the Pauli–Jordan distributionDmH is replaced by the
retarded distributionDret

mH
. If we now calculate the divergence of (49), we obtain an anomaly

A1

2
= ig2m : u8AνA

ν : δ(x − y) (50)

because

∂xµ∂
µ
x D

ret
m (x − y) = −m2Dret

m (x − y)+ δ(x − y). (51)

The terms withx and y interchanged lead to the same contribution. But in the causal
distributionD2 = [T1(x), T1(y)] the term

−g2 : Aµ(x)8(x)[∂
µφ(x), ∂νφ(y)]Aν(y)8(y) : (52)

= −ig2 : Aµ(x)Aν(y)8(x)8(y) : ∂µx ∂
ν
xDmH (x − y) (53)

appears, which has singular degreeω = 0 [2, 3] and therefore allows a normalization term
in the split distribution

∂νx ∂
µ
x D

ret(x − y)→ ∂νx ∂
µ
x D

ret(x − y)+ Cgµνδ(x − y). (54)

Since

dQ(: 8
2AµA

µ : Cδ(x − y)) = 2iCm : u8AµA
µ : δ(x − y)+ · · · (55)

we can compensate the anomaly (50) by choosingC = ig2. In this way we obtain the
quadrilinear couplings of the theory as normalization terms in higher orders. We give here
the complete list of all normalization terms for tree diagrams in second order:

N1 = ig2 : AµA
µ82 : δ(x − y) (56)

N2 = ig2 : AµA
µφ2 : δ(x − y) (57)

N3 = −ig2 m
2
H

4m2
: 84 : δ(x − y) (58)

N4 = ig2

(
m2
H

m2
+ 3δ4

)
: φ282 : δ(x − y) (59)

N5 = ig2λ′ : φ4 : δ(x − y) λ′ still free. (60)

The remaining free parametersδ4 andλ′ can be determined by considering the anomalies
∼ δ(x − z)δ(y − z) of tree diagrams in third order. They arise in the splitting of terms in

D
µ

3/1(x, y, z) = [T µ1/1(x), T2(y, z)] + · · · (61)
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where T µ1/1 (45) gets contracted with a normalization termN1−5 in T2. Considering all
anomalies∼: u8φ3 :, gauge invariance requires

2λ′ = m2
H

m2
+ 3δ4 (62)

and from the anomalies∼: uφ83 : we obtain

δ4 = −m
2
H

2m2
(63)

in agreement with (39).
Besides some basic assumptions concerning simplicity (42), we have constructed the

theory with the help of a guiding principle, namely perturbative quantum gauge invariance,
which, after its construction, is manifest in our approach.
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